美女的隐私秘密网站_国产乱人免费视频_伦理福利片_欧美变态暴力交videos

你的位置:首頁 >

瓶頸到突破 人工智能技術(shù)發(fā)展面臨哪些難關(guān)!

2024/4/15 14:18:07點擊:
  不可否認的是近幾年我國的科技5G,人工智能,大數(shù)據(jù)等新興技術(shù)正在飛速的進步和創(chuàng)新,賦能各產(chǎn)業(yè)突破傳統(tǒng)瓶頸,給予了智能化的變革。
 
2020年是非常特殊的一年,特殊到難以忘懷,年初新冠疫情的爆發(fā),直接給全球帶來了無可估量的損失,科技抗疫過程中人工智能在其中發(fā)揮著不可替代的作用,不可置否,人工智能在這場戰(zhàn)疫中助力科技抗疫功勞不小,但目前我國人工智能水平僅僅處于發(fā)展階段,能做到的事情并不多,那么從瓶頸到突破,人工智能技術(shù)發(fā)展想要進一步突破面臨哪些難關(guān)呢?


 
數(shù)據(jù)極限
 
人工智能離不開機器學習算法,這些算法或模型必須耗用大量的數(shù)據(jù)用來識別模式后進而得到結(jié)論。而這些模型使用標記數(shù)據(jù)加以練習,標記數(shù)據(jù)則需要人工智能在實際過程中會遇到無數(shù)的不同場景。例如,醫(yī)療領(lǐng)域醫(yī)生必須標記出每一張X光片哪些是否存在腫瘤,哪些是什么類型的腫瘤,只有標記出成千上萬張,甚至更多的X光片讓人工智能學習,人工智能才能正確的識別出來,而收集和標記,再到人工智能學習和審查的這段過程,對于我們是很耗費精力和時間。
 
也有一些特殊情況是我們?nèi)狈ψ銐虻臄?shù)據(jù)來支撐構(gòu)建模型,例如無人駕駛汽車,當我們在大雨傾盆的環(huán)境開車的時候,我們視覺受影響導致?lián)躏L玻璃外的環(huán)境很難看的清楚,更不用說道路標線了,那人工智能能夠安全的應付這種情況?訓練人員需要記錄數(shù)十萬英里,才會偶爾遇到所有這些棘手的使用場景,以了解算法如何做出反應并相應地進行調(diào)整。
 
 黑盒子效應
 
任何軟件程序的基礎(chǔ)都離不開邏輯,我們可以通過輸入代碼,查看它們是如何觸發(fā),但對人工智能卻沒有那么透明,基于神經(jīng)網(wǎng)絡(luò)構(gòu)建的人工智能,最終結(jié)果可能無法解釋,我們稱這為黑盒子效應,我們知道它可以工作,但無法告知它是如何進行運算的,可以想象如何我們無法解釋這種龐大的深度學習網(wǎng)絡(luò)過程是如何判定出來的,我們將面臨著無法預估的后果。
 
因此, 克服黑盒子效應最好的辦法莫過于將算法分解了,簡而言之,是人類解釋人工智能的行為,在這方面我們?nèi)赃需要做更多的工作,才能使人工智能邁過這個巨大的障礙。
 
遙不可及通用系統(tǒng)
 
未來,人工智能進化到一定地步將接管世界,任何顧慮這方面的人可以放心,這些不是人工智能太智能,而是人類想象力豐富,只存在科幻電影,即便人工智能在智能方面足夠出色,但也別指望它在更高水平的意識下起到作用。在國外有Steve Wozniak稱之為咖啡測試。意思是機器人可以進入到任意的家庭里沖泡一杯咖啡嗎?要知道,這包括找到咖啡研磨器、找到杯子、識別咖啡機、添水并點擊正確的按鈕。
 
無論是人工智能和機器學習,還是其他技術(shù)都是需要不斷發(fā)展的過程,有難點有瓶頸并非壞事 ,我們只需要在不斷發(fā)展和創(chuàng)新過程中突破。